JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat.

Genetics 2009 March
Effects of polyploidy in allohexaploid wheat (Triticum aestivum L.) have primarily been ascribed to increases in coding sequence variation and potential to acquire new gene functions through mutation of redundant loci. However, regulatory variation that arises through new promoter and transcription factor combinations or epigenetic events may also contribute to the effects of polyploidization. In this study, gene expression was characterized in a synthetic T. aestivum line and the T. turgidum and Aegilops tauschii parents to establish a timeline for such regulatory changes and estimate the frequency of nonadditive expression of homoeologous transcripts in newly formed T. aestivum. Large-scale analysis of nonadditive gene expression was assayed by microarray expression experiments, where synthetic T. aestivum gene expression was compared to additive model values (mid-parent) calculated from parental T. turgidum and Ae. tauschii expression levels. Approximately 16% of genes were estimated to display nonadditive expression in synthetic T. aestivum. A certain fraction of the genes (2.9%) showed overdominance or underdominance. cDNA-single strand conformation polymorphism analysis was applied to measure expression of homoeologous transcripts and further verify microarray data. The results demonstrate that allopolyploidization, per se, results in rapid initiation of differential expression of homoeologous loci and nonadditive gene expression in T. aestivum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app