JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterization of antimicrobial resistance in Salmonella enterica serotype Heidelberg isolated from food animals.

Fifty-eight Salmonella enterica serovar Heidelberg isolates isolated from food animals were tested for antimicrobial susceptibilities and further characterized for select antimicrobial resistance genes, plasmid carriage, class 1 integrons, and genetic relatedness using pulsed-field gel electrophoresis (PFGE). Seventy-two percent of isolates displayed resistance to at least one of the antimicrobial agents tested, while 24% exhibited resistance to eight or more antimicrobial agents. Resistance was most commonly observed to tetracycline (71%), streptomycin (62%), and kanamycin (52%). Isolates obtained from cattle and swine displayed the highest rates of resistance while isolates from chickens more often displayed susceptibility to the tested antimicrobials. When resistance was detected, a corresponding resistance gene was detected in 97.3% of the isolates. Thirteen percent of the isolates contained class 1 integrons containing at least one resistance gene, most often either the aadA or dhfrA genes, which are often associated with resistance to streptomycin and trimethoprim, respectively. Twenty isolates contained plasmids estimated to be at least 75 kb in size, 17 of which exhibited resistance to five or more antimicrobial agents. Thirty PFGE patterns were generated among the 58 isolates tested using XbaI, indicating extensive heterogeneity among this serotype across different animal origins. Results confirm the presence of multidrug-resistance (MDR) phenotypes among food animal isolates of serovar Heidelberg, especially those obtained from mammalian species. The observed MDR was typically associated with the presence of large plasmids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app