Add like
Add dislike
Add to saved papers

Phosphorus-31 magnetic resonance spectroscopy of skeletal muscle in maternally inherited diabetes and deafness A3243G mitochondrial mutation carriers.

PURPOSE: To investigate high-energy phosphate metabolism in striated skeletal muscle of patients with Maternally Inherited Diabetes and Deafness (MIDD) syndrome.

MATERIALS AND METHODS: In 11 patients with the MIDD mutation (six with diabetes mellitus [DM] and five non-DM) and eight healthy subjects, phosphocreatine (PCr) and inorganic phosphate (Pi) in the vastus medialis muscle was measured immediately after exercise using (31)P-magnetic resonance spectroscopy (MRS). The half-time of recovery (t1/2) of monoexponentially fitted (PCr+Pi)/PCr was calculated from spectra obtained every 4 seconds after cessation of exercise. A multiple linear regression model was used for statistical analysis.

RESULTS: Patients with the MIDD mutation showed a significantly prolonged t1/2 (PCr+Pi)/PCr after exercise as compared to controls (13.6+/-3.0 vs. 8.7+/-1.3 sec, P = 0.01). No association between the presence of DM and t1/2 (PCr + Pi)/PCr was found (P = 0.382).

CONCLUSION: MIDD patients showed impaired mitochondrial oxidative phosphorylation in skeletal muscle shortly after exercise, irrespective of the presence of DM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app