Add like
Add dislike
Add to saved papers

Hydroxynaphthyridine-derived group III metal chelates: wide band gap and deep blue analogues of green Alq3 (tris(8-hydroxyquinolate)aluminum) and their versatile applications for organic light-emitting diodes.

A series of group III metal chelates have been synthesized and characterized for the versatile application of organic light-emitting diodes (OLEDs). These metal chelates are based on 4-hydroxy-1,5-naphthyridine derivates as chelating ligands, and they are the blue version analogues of well-known green fluorophore Alq(3) (tris(8-hydroxyquinolinato)aluminum). These chelating ligands and their metal chelates were easily prepared with an improved synthetic method, and they were facially purified by a sublimation process, which enables the materials to be readily available in bulk quantity and facilitates their usage in OLEDs. Unlike most currently known blue analogues of Alq(3) or other deep blue materials, metal chelates of 4-hydroxy-1,5-naphthyridine exhibit very deep blue fluorescence, wide band gap energy, high charge carrier mobility, and superior thermal stability. Using a vacuum-thermal-deposition process in the fabrication of OLEDs, we have successfully demonstrated that the application of these unusual hydroxynaphthyridine metal chelates can be very versatile and effective. First, we have solved or alleviated the problem of exciplex formation that took place between the hole-transporting layer and hydroxynaphthyridine metal chelates, of which OLED application has been prohibited to date. Second, these deep blue materials can play various roles in OLED application. They can be a highly efficient nondopant deep blue emitter: maximum external quantum efficiency eta(ext) of 4.2%; Commision Internationale de L'Eclairage x, y coordinates, CIE(x,y) = 0.15, 0.07. Compared with Alq(3), Bebq(2) (beryllium bis(benzoquinolin-10-olate)), or TPBI (2,2',2''-(1,3,5-phenylene)tris(1-phenyl-1H-benzimidazole), they are a good electron-transporting material: low HOMO energy level of 6.4-6.5 eV and not so high LUMO energy level of 3.0-3.3 eV. They can be ambipolar and possess a high electron mobility of 10(-4) cm(2)/V s at an electric field of 6.4 x 10(5) V/cm. They are a qualified wide band gap host material for efficient blue perylene (CIE(x,y) = 0.14, 0.17 and maximum eta(ext) 3.8%) or deep blue 9,10-diphenylanthracene (CIE(x,y) = 0.15, 0.06 and maximum eta(ext) 2.8%). For solid state lighting application, they are desirable as a host material for yellow dopant (rubrene) in achieving high efficiency (eta(ext) 4.3% and eta(P) 8.7 lm/W at an electroluminance of 100 cd/m(2) or eta(ext) 3.9% and eta(P) 5.1 lm/W at an electroluminance of 1000 cd/m(2)) white electroluminescence (CIE(x,y) = 0.30, 0.35).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app