JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Interactions of the "piano-stool" [ruthenium(II) (eta6-arene)(en)CL]+ complexes with water and nucleobases; ab initio and DFT study.

Piano stool ruthenium complexes of the composition [Ru(II)(eta6-arene)(en)Cl](+/2+) (en = ethylenediamine) represent an emerging class of cisplatin-analogue anticancer drug candidates. In this study, we use computational quantum chemistry to characterize the structure, stability and reactivity of these compounds. All these structures were optimized at DFT(B3LYP)/6-31G(d) level and their single point properties were determined by the MP2/6-31++G(2df,2pd) method. Thermodynamic parameters and rate constants were determined for the aquation process, as a replacement of the initial chloro ligand by water and subsequent exchange reaction of aqua ligand by nucleobases. The computations were carried out at several levels of DFT and ab initio theories (B3LYP, MP2 and CCSD) utilizing a range of bases sets (from 6-31G(d) to aug-cc-pVQZ). Excellent agreement with experimental results for aquation process was obtained at the CCSD level and reasonable match was achieved also with the B3LYP/6-31++G(2df,2pd) method. This level was used also for nucleobase-water exchange reaction where a smaller rate constant for guanine exchange was found in comparison with adenine. Although adenine follows a simple replacement mechanism, guanine complex passes by a two-step mechanism. At first, Ru-O6(G) adduct is formed, which is transformed through a chelate TS2 to the Ru-N7(G) final complex. In case of guanine, the exchange reaction is more favorable thermodynamically (releasing in total by about 8 kcal/mol) but according to our results, the rate constant for guanine substitution is slightly smaller than the analogous constant in adenine case when reaction course from local minimum is considered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app