CASE REPORTS
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Maple syrup urine disease due to a new large deletion at BCKDHA caused by non-homologous recombination.

Maple syrup urine disease (MSUD) is a rare disorder of branched-chain amino acid (BCAA) metabolism caused by the defective function of branched-chain α-ketoacid dehydrogenase complex (BCKD). Many MSUD-causing mutations have already been described in genes that encode the complex (BCKDHA, BCKDHB and DBT), but up to now only four large deletions are known, all located in the DBT gene. In a previous study we identified a Portuguese MSUD patient with a homozygous deletion of exons 2, 3 and 4 at the BCKDHA gene; however, the corresponding breakpoints and, consequently, the exact deletion extension were not identified. Here, using long-range PCR and sequencing methodologies we were able to refine the characterization of this gross rearrangement. A genomic DNA loss of about 13.8 kb was detected, starting at intron 1 and ending at intron 4, thus encompassing exons 2, 3 and 4. Molecular characterization showed that the deletion junction contained a short sequence whose motif was CGGG. Since this motif is present in introns 1 and 4 of normal genomic DNA, we have hypothesized that non-homologous recombination was the mechanism underlying the identified large deletion, within which the CGGG could be derived either from intron 1 or from intron 4.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app