Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dietary chitosan improves hypercholesterolemia in rats fed high-fat diets.

The hypolipidemic mechanism of chitosan was investigated in male Sprague-Dawley rats. Animals were divided into 5 groups (n = 8): a normal fat control group, a high-fat control group (HF), a positive control group (CR), and 2 chitosan groups (CIS1 and CIS2). Chitosan was fed at the beginning (CIS1) and after 2 weeks (CIS2). A commercial diet with 5% (wt/wt) cellulose (HF), cholestyramine (CR), or chitosan (CIS1, CIS2) was fed for 6 weeks. Chitosan did not affect food intake but decreased body weight gain and significantly increased fecal fat and cholesterol excretion, reduced the lipid level in plasma and liver, increased liver hepatic and lipoprotein lipase activities compared with HF (P < .05), and tended to relieve the degenerated fatty liver tissue. No significant differences in all measurements were found between the CIS1 and CIS2 groups although the CIS1 rats exhibited lower lipid levels compared to those in the CIS2 group. The results suggest that chitosan reduced the absorption of dietary fat and cholesterol in vivo and could effectively improve hypercholesterolemia in rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app