Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Impaired thymopoiesis occurring during the thymic involution of tumor-bearing mice is associated with a down-regulation of the antiapoptotic proteins Bcl-XL and A1.

The thymus is a central lymphoid organ in which T lymphocytes undergo differentiation and maturation without the need for antigenic stimulation. Apoptosis (programmed cell death), plays a critical role in shaping the T cell repertoire, deleting unproductive as well as potentially autoreactive T cells. Thymic atrophy has been observed in several model systems, including aging, graft-vs-host-disease and tumor development. However, the mechanisms involved in this phenomenon remain to be completely elucidated. We have previously shown that the progressive growth of D1-DMBA-3 mammary tumor leads to extreme thymic atrophy in the host. This thymic involution is associated with an early block in T cell maturation at the triple negative stage of differentiation. In the present study we have used our murine mammary tumor model to further analyze the specific T cell subpopulations present in the thymus of tumor-bearing animals as well as to characterize the alterations of the apoptotic process present during the impaired thymopoiesis associated to this thymic involution. Flow cytometric analysis revealed a moderate increase in the percentages of single positive CD4+ and CD8+ cells within the CD3 negative population in the thymuses of tumor-bearing mice. Moreover, we observed a prolonged increase in apoptosis among thymocytes from tumor-bearing mice compared with thymocytes from normal mice during tumor development. Lastly, we found a major decrease of Bcl-XL and A1, two crucial anti-apoptotic Bcl-2 family members that are developmentally regulated in T cells. Together, our data suggest that the severe thymic involution seen in mammary tumor bearers is due to an arrest in at least two steps of T cell differentiation and a down-regulation of important molecules that control programmed cell death.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app