Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cell death by bortezomib-induced mitotic catastrophe in natural killer lymphoma cells.

The proteasome inhibitor bortezomib (PS-341/Velcade) is used for the treatment of relapsed and refractory multiple myeloma and mantle-cell lymphoma. We recently reported its therapeutic potential against natural killer (NK)-cell neoplasms. Here, we investigated the molecular mechanisms of bortezomib-induced cell death in NK lymphoma cells. NK lymphoma cell lines (SNK-6 and NK-YS) and primary cultures of NK lymphomas treated with bortezomib were examined for alterations in cell viability, apoptosis, cellular senescence, and cell cycle status. Bortezomib primarily induced mitochondrial apoptosis in NK-YS cells and in primary lymphoma cells at the same concentration as reported in myeloma cells. Unexpectedly, SNK-6 cells required a significantly higher median inhibitory concentration of bortezomib (23 nmol/L) than NK-YS and primary lymphoma cells (6-13 nmol/L). Apoptosis was limited in SNK-6 cells due to the extensively delayed turnover of Bcl-2 family members. These cells were killed by bortezomib, albeit at higher pharmacologic concentrations, via mitotic catastrophe-a mitotic cell death associated with M-phase arrest, cyclin B1 accumulation, and increased CDC2/CDK1 activity. Our results suggest that, in addition to cell death by apoptosis at lower bortezomib concentrations, NK lymphoma cells resistant to bortezomib-induced apoptosis can be killed via mitotic catastrophe, an alternative cell death mechanism, at higher pharmacologic concentrations of bortezomib. Hence, activating mitotic catastrophe by bortezomib may provide a novel therapeutic approach for treating apoptosis-resistant NK-cell malignancies and other cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app