Add like
Add dislike
Add to saved papers

The efficacy of nitrosonaphthol functionalized XAD-16 resin for the preconcentration/sorption of Ni(II) and Cu(II) ions.

Talanta 2007 July 32
Amberlite XAD-16 resin has been functionalized using nitrosonaphthol as a ligand and characterized employing elemental, thermogravimetric analysis and FT-IR spectroscopy. The sorption of Ni(II) and Cu(II) ions onto this functionalized resin is investigated and optimized with respect to the sorptive medium (pH), shaking speed and equilibration time between liquid and solid phases. The monitoring of the influence of diverse ions on the sorption of metal ions has revealed that phosphate, bicarbonate and citrate reduce the sorption up to 10-14%. The sorption data followed Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherms. The Freundlich parameters computed are 1/n=0.56+/-0.03 and 0.49+/-0.05, A=9.54+/-1.5 and 6.0+/-0.5 mmol g(-1) for Ni(II) and Cu(II) ions, respectively. D-R isotherm yields the values of X(m)=0.87+/-0.07 and 0.35+/-0.05 mmol g(-1) and of E=9.5+/-0.23 and 12.3+/-0.6 kJ mol(-1) for Ni(II) and Cu(II) ions, respectively. Langmuir characteristic constants estimated are Q=0.082+/-0.005 and 0.063+/-0.003 mmol g(-1), b=(4.7+/-0.2)x10(4) and (7.31+/-0.11)x10(4)l mol(-1) for Ni(II) and Cu(II) ions, respectively. The variation of sorption with temperature gives thermodynamic quantities of DeltaH=-58.9+/-0.12 and -40.38+/-0.11 kJ mol(-1), DeltaS=-183+/-10 and -130+/-8 J mol(-1)K(-1) and DeltaG=-4.4+/-0.09 and -2.06+/-0.08 kJ mol(-1) at 298 K for Ni(II) and Cu(II) ions, respectively. Using kinetic equations, values of intraparticle transport and of first order rate constant have been computed for both the metal ions. The sorption procedure is utilized to preconcentrate these ions prior to their determination in tea, vegetable oil, hydrogenated oil (ghee) and palm oil by atomic absorption spectrometry using direct and standard addition methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app