JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Long-term survival and bipotent terminal differentiation of human mesenchymal stem cells (hMSC) in combination with a commercially available three-dimensional collagen scaffold.

Researchers working in the field of tissue engineering ideally combine autologous cells and biocompatible scaffolds to replace defect tissues/organs. Due to their differentiation capacity, mesenchym-derived stem cells, such as human mesenchymal stem cells (hMSC), are a promising autologous cell source for the treatment of human diseases. As natural precursors for mesenchymal tissues, hMSC are particularly suitable for bone, cartilage, and adipose tissue replacement. In this study a detailed histological and ultrastructural analysis of long-term cultured and terminally differentiated hMSC on 3D collagen scaffolds was performed. Standardized 2D differentiation protocols for hMSC into adipocytes and osteoblasts were adapted for long-term 3D in vitro cultures in porous collagen matrices. After a 50-day culture period, large numbers of mature adipocytes and osteoblasts were clearly identifiable within the scaffolds. The adipocytes exhibited membrane free lipid vacuoles. The osteoblasts were arranged in close association with hydroxyapatite crystals, which were deposited on the surrounding fibers. The collagen matrix was remodeled and adopted a contracted and curved form. Human MSC survive long-term culture within these scaffolds and could be terminally differentiated into adipocytes and osteoblasts. Thus, the combination of hMSC and this particular collagen scaffold is a possible candidate for bone and adipose tissue replacement strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app