JOURNAL ARTICLE

Energy- and hole-transfer dynamics in oxidized porphyrin dyads

Hee-eun Song, Christine Kirmaier, James R Diers, Jonathan S Lindsey, David F Bocian, Dewey Holten
Journal of Physical Chemistry. B 2009 January 8, 113 (1): 54-63
19067561
The mechanisms and dynamics of quenching of a photoexcited free base porphyrin (Fb*) covalently linked to a nearby oxidized zinc porphyrin (Zn(+)) have been investigated in a set of five dyads using time-resolved absorption spectroscopy. The dyads include porphyrins joined at the meso-positions by a diphenylethyne linker or a diarylethyne linker with 2,6-dimethyl substitution on either one or both of the aryl rings. Another dyad is linked at the beta-pyrrole positions of the porphyrins via a diphenylethyne linker. The type of linker and attachment site modulate the interporphyrin through-bond electronic coupling via steric hindrance (porphyrin-linker orbital overlap) and attachment motif (porphyrin electron density at the connection site). For each ZnFb dyad, the zinc porphyrin is selectively electrochemically oxidized (to produce Zn(+)Fb), the free base porphyrin is selectively excited with a 130 fs flash (to produce Zn(+)Fb*), and the subsequent dynamics monitored. The Zn(+)Fb* excited state has a lifetime of approximately 3 to approximately 30 ps (depending on the linker steric hindrance and attachment site) and decays by parallel excited-state energy- and hole-transfer pathways. The relative yields of the two channels depend on a number of factors including the linker-mediated through-bond electronic coupling and a modest (< or =20%) Forster through-space contribution for the energy-transfer route. One product of Zn(+)Fb* decay is the metastable ground-state ZnFb(+), which decays to the Zn(+)Fb preflash state by ground-state hole transfer with a linker-dependent rate constant of (20 ps)(-1) to (150 ps)(-1). Collectively, these results provide a detailed understanding of the mechanism and dynamics of quenching of excited porphyrins by nearby oxidized sites, as well as the dynamics of ground-state hole transfer between nonequivalent porphyrins (Zn and Fb). The findings also lay the foundation for the study of ground-state hole transfer between identical porphyrins (e.g., Zn/Zn, Fb/Fb) in larger multiporphyrin arrays wherein a hole is selectively placed via electrochemical oxidation.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
19067561
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"