JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Involvement of an R2R3-MYB transcription factor gene AtMYB118 in embryogenesis in Arabidopsis.

MYB transcription factors play important roles in various developmental processes in plants. Here we report the characterization of AtMYB118, a gene encoding a putative R2R3-type MYB transcription factor, which expresses predominantly in siliques. Real-time quantitative PCR analysis and in situ hybridization showed that the transcripts of AtMYB118 were mainly detected in developing embryos. Constitutive over-expression of AtMYB118 resulted in pleiotropic phenotypes, including dwarfism, compact rosettes, backward curly-leaves, smaller flowers and siliques, and premature seed dehydration at the tip of siliques. Microarray analysis showed that many genes encoding proteins accumulated during embryogenesis were remarkably up-regulated in AtMYB118-over-expressed transgenic plants, including late embryogenesis abundant proteins (LEA proteins), storage proteins, seed maturation proteins, and proteins related with seed dehydration, desiccation and ABA signaling pathway. These results suggest that AtMYB118 may play an important role during embryogenesis and seed maturation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app