A new approach to diagnosing of importance degree of obstructive sleep apnea syndrome: Pairwise AIRS and Fuzzy-AIRS classifiers

Kemal Polat, Sebnem Yosunkaya, Salih Güneş
Journal of Medical Systems 2008, 32 (6): 489-97
Artificial Immune Recognition System (AIRS) classifier algorithm is robust and effective in medical dataset classification applications such as breast cancer, heart disease, diabetes diagnosis etc. In our previous work, we have proposed a new resource allocation mechanism called fuzzy resource allocation in AIRS algorithm both to improve the classification accuracy and to decrease the computation time in classification process. Here, AIRS and Fuzzy-AIRS classifier algorithms and one against all approach have been combined to increase the classification accuracy of obstructive sleep apnea syndrome (OSAS) that is an important disease that influences both the right and the left cardiac ventricle. The OSAS dataset consists of four classes including of normal (25 subjects), mild OSAS (AHI (Apnea and Hypoapnea Index) = 5-15 and 14 subjects), moderate OSAS (AHI < 15-30 and 18 subjects), and serious OSAS (AHI > 30 and 26 subjects). In the extracting of features that is characterized the OSAS disease, the clinical features obtained from Polysomnography used diagnostic tool for obstructive sleep apnea in patients clinically suspected of suffering from this disease have been used. The used clinical features are Arousals Index (ARI), Apnea and Hypoapnea Index (AHI), SaO2 minimum value in stage of REM, and Percent Sleep Time (PST) in stage of SaO2 intervals bigger than 89%. Even though AIRS and Fuzzy-AIRS classifiers have been used in the classifying multi-class problems, theirs classification performances are low in the case of multi-class classification problems. Therefore, we have used two classes in AIRS and Fuzzy-AIRS classifiers by means of one against all approach instead of four classes comprising the healthy subjects, mild OSAS, moderate OSAS, and serious OSAS. We have applied the AIRS, Fuzzy-AIRS, AIRS with one against all approach (Pairwise AIRS), and Fuzzy-AIRS with one against all approach (Pairwise Fuzzy-AIRS) to OSAS dataset. The obtained classification accuracies are 63.41%, 63.41%, 87.19%, and 84.14% using the above methods for 200 resources, respectively. These results show that the best method for diagnosis of OSAS is the combination of AIRS and one against all approach (Pairwise AIRS).

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"