Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Type IIc sodium-dependent phosphate transporter regulates calcium metabolism.

Primary renal inorganic phosphate (Pi) wasting leads to hypophosphatemia, which is associated with skeletal mineralization defects. In humans, mutations in the gene encoding the type IIc sodium-dependent phosphate transporter lead to hereditary hypophophatemic rickets with hypercalciuria, but whether Pi wasting directly causes the bone disorder is unknown. Here, we generated Npt2c-null mice to define the contribution of Npt2c to Pi homeostasis and to bone abnormalities. Homozygous mutants (Npt2c(-/-)) exhibited hypercalcemia, hypercalciuria, and elevated plasma 1,25-dihydroxyvitamin D(3) levels, but they did not develop hypophosphatemia, hyperphosphaturia, renal calcification, rickets, or osteomalacia. The increased levels of 1,25-dihydroxyvitamin D(3) in Npt2c(-/-) mice compared with age-matched Npt2c(+/+) mice may be the result of reduced catabolism, because we observed significantly reduced expression of renal 25-hydroxyvitamin D-24-hydroxylase mRNA but no change in 1alpha-hydroxylase mRNA levels. Enhanced intestinal absorption of calcium (Ca) contributed to the hypercalcemia and increased urinary Ca excretion. Furthermore, plasma levels of the phosphaturic protein fibroblast growth factor 23 were significantly decreased in Npt2c(-/-) mice. Sodium-dependent Pi co-transport at the renal brush border membrane, however, was not different among Npt2c(+/+), Npt2c(+/-), and Npt2c(-/-) mice. In summary, these data suggest that Npt2c maintains normal Ca metabolism, in part by modulating the vitamin D/fibroblast growth factor 23 axis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app