JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Water-based route to ligand-selective synthesis of ZnSe and Cd-doped ZnSe quantum dots with tunable ultraviolet A to blue photoluminescence.

A water-based route has been demonstrated for synthesizing ZnSe and Cd-doped ZnSe (Zn(x)Cd(1-x)Se, 0 < x < 1) quantum dots (QDs) that have tunable and narrow photoluminescence (PL) peaks from the ultraviolet A (UVA) to the blue range (350-490 nm) with full-width at half-maximum (fwhm) values of 24-36 nm. Hydrazine (N(2)H(4)) was used to maintain oxygen-free conditions, allowing the reaction vessel to be open to air. The properties of the QDs were controlled using the thiol ligands, 3-mercaptopropionic acid (MPA), thiolglycolic acid (TGA), and l-glutathione (GSH). On the basis of optical spectra, linear three-carbon MPA attenuated nucleation and growth, yielding small ZnSe QDs with a high density of surface defects. In contrast, TGA and GSH produced larger ZnSe QDs with lower surface defect densities. The absorption spectra show that growth was more uniform and better controlled with linear two-carbon TGA than branched bifunctional GSH. After 20 min of growth TGA-capped ZnSe had an average diameter of 2.5 nm based on high-resolution transmission electron microscopy images; these nanocrystals had an absorbance peak maximum of approximately 340 nm (3.65 eV) and a band gap PL emission peak at 372 nm (3.34 eV). Highly fluorescent Zn(x)Cd(1-x)Se QDs were fabricated by adding a Cd-thiol complex directly to ZnSe QD solutions; PL peaks were tuned in the blue range (400-490 nm) by changing the Zn to Cd ratio. The Cd-bearing nanocrystals contained proportionally more Se based on X-ray photoelectron spectroscopy, and Cd-Se bonds had ionic character, in contrast to primarily covalent Zn-Se bonds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app