Add like
Add dislike
Add to saved papers

Ultrafast energy redistribution in C(60) fullerenes: a real time study by two-color femtosecond spectroscopy.

Strong-field excitation and energy redistribution dynamics of C(60) fullerenes are studied by means of time-resolved mass spectrometry in a two-color femtosecond pump-probe setup. Resonant pre-excitation of the electronic system via the first dipole-allowed HOMO-->LUMO+1(t(1g)) (HOMO denotes highest occupied molecular orbital and LUMO denotes lowest unoccupied molecular orbital) transition with ultrashort 25 fs pulses at 399 nm of some 10(12) W cm(-2) results in a highly nonequilibrium distribution of excited electrons and vibrational modes in the neutral species. The subsequent coupling among the electronic and nuclear degrees of freedom is monitored by probing the system with time-delayed 27 fs pulses at 797 nm of some 10(13) W cm(-2). Direct information on the characteristic relaxation time is derived from the analysis of transient singly and multiply charged parent and fragment ion signals as a function of pump-probe delay and laser pulse intensity. The observed relaxation times tau(el) approximately 60-400 fs are attributed to different microcanonical ensembles prepared in the pre-excitation process and correspond to different total energy contents and energy sharing between electronic and vibrational degrees. The characteristic differences and trends allow one to extract a consistent picture for the formation dynamics of ions in different charge states and their fullerenelike fragments and give evidence to collective effects in multiple ionization such as plasmon-enhanced energy deposition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app