JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Modifying a tilting disk mechanical heart valve design to improve closing dynamics.

The closing behavior of mechanical heart valves is dependent on the design of the valve and its housing, the valve composition, and the environment in which the valve is placed. One innovative approach for improving the closure dynamics of tilting disk valves is introduced here. We transformed a normal Delrin occluder into one containing a "dynamic liquid core" to resist acceleration and reduce the moment of inertia, closing velocity, and impact forces of the valve during closure. The modified occluder was studied in the mitral position of a simulation chamber under the physiologic and elevated closing conditions of 2500 mm Hg/s and 4500 mm Hg/s, respectively. Cavitation energy, detected as high-frequency pressure transients with a hydrophone, was the measure used to compare the modified valve with its unaltered counterpart. The cavitation potential of tilting disk valves is indicative of the extent of blood damage occurring during valve closure. Initial findings suggest that changes to the structure or physical properties of well established mechanical valves, such as the one described here, can reduce closure induced hemolysis by minimizing cavitation. Compared with a normal valve, the cavitation intensity associated with our modified valve was reduced by more than 66% at the higher load. Furthermore, the modified valve took longer to completely close than did the standard tilting disk valve, indicating a dampened impact and rebound of the occluder with its housing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app