JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pseudo-Jahn-Teller origin of the low barrier hydrogen bond in N(2)H(7) (+).

Journal of Chemical Physics 2008 September 29
The microscopic origin and quantum effects of the low barrier hydrogen bond (LBHB) in the proton-bound ammonia dimer cation N(2)H(7) (+) were studied by means of ab initio and density-functional theory (DFT) methods. These results were analyzed in the framework of vibronic theory and compared to those obtained for the Zundel cation H(5)O(2) (+). All geometry optimizations carried out using wavefunction-based methods [Hartree-Fock, second and fourth order Moller-Plesset theory (MP2 and MP4), and quadratic configuration interaction with singles and doubles excitations (QCISD)] lead to an asymmetrical H(3)N-H(+)cdots, three dots, centeredNH(3) conformation (C(3v) symmetry) with a small energy barrier (1.26 kcalmol in MP4 and QCISD calculations) between both equivalent minima. The value of this barrier is underestimated in DFT calculations particularly at the local density approximation level where geometry optimization leads to a symmetric H(3)Ncdots, three dots, centeredH(+)cdots, three dots, centeredNH(3) structure (D(3d) point group). The instability of the symmetric D(3d) structure is shown to originate from the pseudo-Jahn-Teller mixing of the electronic (1)A(1g) ground state with five low lying excited states of A(2u) symmetry through the asymmetric alpha(2u) vibrational mode. A molecular orbital study of the pseudo-Jahn-Teller coupling has allowed us to discuss the origin of the proton displacement and the LBHB formation in terms of the polarization of the NH(3) molecules and the transfer of electronic charge between the proton and the NH(3) units (rebonding). The parallel study of the H(5)O(2) (+) cation, which presents a symmetric single-well structure, allows us to analyze why these similar molecules behave differently with respect to proton transfer. From the vibronic analysis, a unified view of the Rudle-Pimentel three-center four-electron and charge transfer models of LBHBs is given. Finally, the large difference in the N-N distance in the D(3d) and C(3v) configurations of N(2)H(7) (+) indicates a large anharmonic coupling between alpha(2u)-alpha(1g) modes along the proton-transfer dynamics. This issue was explored by solving numerically the vibrational Schrodinger equation corresponding to the bidimensional E[Q(alpha(2u)),Q(alpha(1g))] energy surface calculated at the MP46-311++G(**) level of theory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app