Add like
Add dislike
Add to saved papers

Benchmarks for electronically excited states: time-dependent density functional theory and density functional theory based multireference configuration interaction.

Journal of Chemical Physics 2008 September 15
Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole moments are computed using the same geometries (MP2/6-31G(*)) and basis set (TZVP) as in our previous ab initio benchmark study on electronically excited states. The results from TD-DFT (with the functionals BP86, B3LYP, and BHLYP) and from DFT/MRCI are compared against the previous high-level ab initio results, and, in particular, against the proposed best estimates for 104 singlet and 63 triplet vertical excitation energies. The statistical evaluation for the latter reference data gives the lowest mean absolute deviations for DFT/MRCI (0.22 eV for singlets and 0.24 eV for triplets) followed by TD-DFT/B3LYP (0.27 and 0.44 eV, respectively), whereas TD-DFT/BP86 and TD-DFT/BHLYP are significantly less accurate. The energies of singlet states with double excitation character are generally overestimated by TD-DFT, whereas triplet state energies are systematically underestimated by the currently investigated DFT-based methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app