Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Leprosy pathogenetic background: a review and lessons from other mycobacterial diseases.

Leprosy is a disease caused by Mycobacterium leprae that initially affects the peripheral nervous system with patients exhibiting contrasting clinical, immunological, and pathological manifestations despite minimal genetic variation among bacilli isolates. Its clinical manifestations are related to M. leprae survival, innate and acquired immune responses, and interactions between host and bacterial proteins, preventing their invasion and infection, or promoting their development and pathogenesis. The complex molecular interactions in affected individuals influenced by the pathogenetic background will be explored in this review. However, the great genetic diversity imposes difficulty for understanding disease development, and it is likely that many factors and metabolic pathways regulating the immense and contrasting symptomatology will yet be revealed. Four pathways may play a central role in leprosy, including the TLR/LIR-7, VDR, TNF-alpha, and TGF-beta1 for which a large amount of gene polymorphisms have been described that could potentially affect the clinical outcome. Cross-talk pathways may significantly change the course of the disease, depending on the specific disequilibrium of genic homeostasis, which is highly dependent on the environment, antigens that are presented to the host cell, and specific polymorphisms that interact with other genes, external factors, and pathogen survival, culminating in leprosy occurrence. Currently, the microarray-based genomic survey of gene polymorphisms, multiple gene expression analyses, and proteomic technologies, such as mass spectrometry and phage display applied in the discovery of antigens, represent a great potential for evaluating individual responses of leprosy patients and contacts to predict the outcome and progression of the disease. At present, none of the genes is good prognostic marker; however, in the near future we may use multiple targets to predict infection and leprosy development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app