JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Administration of pigment epithelium-derived factor (PEDF) reduces proteinuria by suppressing decreased nephrin and increased VEGF expression in the glomeruli of adriamycin-injected rats.

BACKGROUND: Pigment epithelium-derived factor (PEDF) is a glycoprotein with potent neuronal differentiating activity. We, along with others, have recently found that PEDF inhibits retinal hyperpermeability by counteracting the biological effects of vascular endothelial growth factor (VEGF). However, the protective role of PEDF against nephrotic syndrome (NS), a condition of hyperpermeability in the glomerular capillaries, remains to be elucidated. In this study, we investigated whether and how PEDF reduced proteinuria in rats with adriamycin (ADR)-induced nephropathy (ADN), an experimental model of NS.

METHODS: ADN was induced by a single intravenous injection of doxorubicin hydrochloride (n = 12). Half the ADN rats were intravenously administrated human recombinant PEDF; the other half were given vehicle everyday for up to 14 days. Control rats (n = 6) received vehicle only.

RESULTS: In ADN, expression levels of PEDF in isolated glomeruli were significantly decreased, which were associated with a marked proteinuria and increased urinary excretion of nephrin, an index of podocyte damage. Loss of nephrin and decreased podocyte cell number and fusion of foot processes of podocytes with nuclear factor-kappa B (NF-kappaB) activation and VEGF overexpression were also observed in the glomeruli of rats with ADN. Intravenous administration of PEDF ameliorated all of these changes in ADN rats.

CONCLUSION: The present findings suggest that PEDF could reduce proteinuria by suppressing podocyte damage and decreased nephrin as well as increased VEGF expression in the glomeruli of ADN rats. Pharmacological up-regulation or substitution of PEDF may offer a promising therapeutic strategy for the treatment of nephrotic syndrome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app