JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Synergistic effects of cyclic strain and Th1-like cytokines on tenascin-C production by rheumatic aortic valve interstitial cells.

Tenascin-C (TN-C) is a key component of extracellular matrix (ECM) and its expression process is poorly understood during rheumatic heart valvular disease (RHVD). In this study, we found that interferon (IFN)-gamma, tumour necrosis factor (TNF)-alpha and TN-C concentrations in patients with RHVD were significantly higher than in normal controls. More IFN-gamma receptors and TNF receptors were found being expressed on rheumatic aortic valves interstitial cells than on non-rheumatic ones and their expression was patients' sera dependent. Antibodies neutralizing IFN-gamma or TNF-alpha could attenuate patients' sera-induced TN-C transcription by isolated rheumatic aortic valves interstitial cells. By application with different protein kinase inhibitors, we found that combined with cyclic strain, TNF-alpha and IFN-gamma induced TN-C transcription through the RhoA/ROCK signalling pathway. At the same time, p38 mitogen-activated protein kinase was involved in TNF-alpha and IFN-gamma induced TN-C transcription. TNF-alpha also increased TN-C mRNA level by additional PKC and ERK 1/2 activation. Our finding revealed a new insight into ECM remodelling during RHVD pathogenesis and new mechanisms involved in the clinical anti-IFN-gamma and anti-TNF-alpha therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app