COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of pre- and postpolymerization on flexural strength and elastic modulus of impregnated, fiber-reinforced denture base acrylic resins.

STATEMENT OF PROBLEM: Impregnated fibers require light polymerization; however, little information exists about how different protocols might affect the mechanical properties of reinforced denture base materials.

PURPOSE: The purpose of this study was to compare the effects of pre- or postpolymerization of preimpregnated fibers on the flexural strength and elastic modulus of a reinforced autopolymerized and a heat-polymerized acrylic resin.

MATERIAL AND METHODS: Seventy-two specimens were divided into 12 treatment groups (n=6), according to type of acrylic resin (autopolymerized or heat polymerized), type of reinforcement, and its pre- or postpolymerization. Impregnated glass fibers (Fibrex-Lab), unimpregnated glass fibers (Fibrante), and ribs made from a restorative composite resin (Z250) were used as reinforcements. The reinforcements were light polymerized either before or after incorporation and processing of the acrylic resins. Specimens were tested in 3-point load and the data were analyzed using 2-way ANOVA and Tukey post hoc test (alpha=.05). Specimens were further examined using light microscopy, atomic force microscopy, and scanning electron microscopy.

RESULTS: Elastic modulus was significantly higher for heat-polymerized acrylic resins than for autopolymerized acrylic resins (P<.001). Prepolymerized fibers increased both flexural strength and elastic modulus of autopolymerized acrylic resins significantly more than postpolymerized fibers (P<.001); however, postpolymerized fibers yielded a higher elastic modulus than prepolymerized fibers for the heat-polymerized material (P<.001).

CONCLUSIONS: Prepolymerized fibers improved the overall mechanical properties of reinforced autopolymerized acrylic resins more than postpolymerized fibers. However, postpolymerization of fibers yielded higher elastic modulus for reinforced heat-polymerized acrylics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app