Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Distribution characteristics of phenanthrene in the water, suspended particles and sediments from Yangtze River under hydrodynamic conditions.

The effects of aquatic sediment concentrations, grain size distribution and hydrodynamic conditions on sorption behavior of phenanthrene (PHE) on sediments collected from Yangtze River (Wuhan catchment) were investigated. The results showed that the sorption behavior of PHE was mainly affected by the organic carbon in different phases, i.e. organic carbon contents (f(oc)) (w/w, organic carbon/dry weight sediment) in the sediments and dissolved organic carbon (DOC) in liquid phase. In this study, sediments were subjected to artificial resuspension under turbulent diffusion coefficients being 24.6, 29.5 and 46.2 cm(2)s(-1) corresponded to 0.4, 0.3 and 0.2 s cycle(-1) of the perforated grids, respectively, which were driven by variable speed motor with 150, 180 and 280 rotation per minute (rpm). The suspended particle concentration increased from 1.01 to 6.70 g L(-1) as the hydrodynamic strength increased from 150 to 280 rpm, whereas PHE concentration in liquid phase decreased from 0.56 to 0.34 microg mL(-1). The amount of DOC was supposed to play an important role in the partition of PHE under hydrodynamic conditions. Moreover, a sorption dynamic model was developed based on the linear isotherm expression and law of conservation of mass. The model was validated by PHE sorption behavior acquired with three different hydrodynamic conditions and the predicted values displayed satisfying accordance with experimental data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app