Add like
Add dislike
Add to saved papers

Dose volume histogram analysis of normal structures associated with accelerated partial breast irradiation delivered by high dose rate brachytherapy and comparison with whole breast external beam radiotherapy fields.

PURPOSE: To assess the radiation dose delivered to the heart and ipsilateral lung during accelerated partial breast brachytherapy using a MammoSite applicator and compare to those produced by whole breast external beam radiotherapy (WBRT).

MATERIALS AND METHODS: Dosimetric analysis was conducted on patients receiving MammoSite breast brachytherapy following conservative surgery for invasive ductal carcinoma. Cardiac dose was evaluated for patients with left breast tumors with a CT scan encompassing the entire heart. Lung dose was evaluated for patients in whom the entire lung was scanned. The prescription dose of 3400 cGy was 1 cm from the balloon surface. MammoSite dosimetry was compared to simulated WBRT fields with and without radiobiological correction for the effects of dose and fractionation. Dose parameters such as the volume of the structure receiving 10 Gy or more (V10) and the dose received by 20 cc of the structure (D20), were calculated as well as the maximum and mean doses received.

RESULTS: Fifteen patients were studied, five had complete lung data and six had left-sided tumors with complete cardiac data. Ipsilateral lung volumes ranged from 925-1380 cc. Cardiac volumes ranged from 337-551 cc. MammoSite resulted in a significantly lower percentage lung V30 and lung and cardiac V20 than the WBRT fields, with and without radiobiological correction.

CONCLUSION: This study gives low values for incidental radiation received by the heart and ipsilateral lung using the MammoSite applicator. The volume of heart and lung irradiated to clinically significant levels was significantly lower with the MammoSite applicator than using simulated WBRT fields of the same CT data sets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app