Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

NK cells induce apoptosis in tubular epithelial cells and contribute to renal ischemia-reperfusion injury.

Journal of Immunology 2008 December 2
Renal ischemia-reperfusion injury (IRI) can result in acute renal failure with mortality rates of 50% in severe cases. NK cells are important participants in early-stage innate immune responses. However, their role in renal tubular epithelial cell (TEC) injury in IRI is currently unknown. Our data indicate that NK cells can kill syngeneic TEC in vitro. Apoptotic death of TEC in vitro is associated with TEC expression of the NK cell ligand Rae-1, as well as NKG2D on NK cells. In vivo following IRI, there was increased expression of Rae-1 on TEC. FACS analyses of kidney cell preparations indicated a quantitative increase in NKG2D-bearing NK cells within the kidney following IRI. NK cell depletion in wild-type C57BL/6 mice was protective, while adoptive transfer of NK cells worsened injury in NK, T, and B cell-null Rag2(-/-)gamma(c)(-/-) mice with IRI. NK cell-mediated kidney injury was perforin (PFN)-dependent as PFN(-/-) NK cells had minimal capacity to kill TEC in vitro compared with NK cells from wild-type, FasL-deficient (gld), or IFN-gamma(-/-) mice. Taken together, these results demonstrate for the first time that NK cells can directly kill TEC and that NK cells contribute substantially to kidney IRI. NK cell killing may represent an important underrecognized mechanism of kidney injury in diverse forms of inflammation, including transplantation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app