JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

High in vitro antimicrobial activity of synthetic antimicrobial peptidomimetics against staphylococcal biofilms.

OBJECTIVES: The aim of the study was to investigate the antimicrobial effect of different antibiotics and synthetic antimicrobial peptidomimetics (SAMPs) on staphylococcal biofilms.

METHODS: Biofilms of six staphylococcal strains (two Staphylococcus haemolyticus, two Staphylococcus epidermidis and two Staphylococcus aureus isolates) were grown for 24 h in microtitre plates. They were washed and treated for 24 h with different concentrations of linezolid, tetracycline, rifampicin and vancomycin and four different SAMPs. After treatment, the redox indicator Alamar Blue was used to quantify metabolic activity of bacteria in biofilms, and confocal laser scanning microscopy with LIVE/DEAD staining was used to further elucidate any effects.

RESULTS: At MIC levels, rifampicin and tetracycline showed a marked reduction of metabolic activity in the S. epidermidis and S. haemolyticus biofilm. Linezolid had a moderate effect and vancomycin had a poor effect. MIC x10 and MIC x100 improved the antimicrobial activity of all antibiotics, especially vancomycin. However, metabolic activity was not completely suppressed in strong biofilm-producing strains. At MIC x10, the three most effective SAMPs (Ltx5, Ltx9 and Ltx10) were able to completely eliminate metabolic activity in the S. epidermidis and S. haemolyticus biofilms, which was also confirmed by complete cell death using confocal laser scanning microscopy investigations. Although none of the Ltx SAMPs could fully suppress metabolic activity in the S. aureus biofilm, their effect was superior to all tested antibiotics.

CONCLUSIONS: SAMPs had superior antimicrobial activity in staphylococcal biofilms compared with conventional antibiotics and are potential new therapeutic agents for biofilm-associated infections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app