JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

PCR differential display-based identification of regulator of G protein signaling 10 as the target gene in human colon cancer cells induced by black tea polyphenol theaflavin monogallate.

We have previously reported that black tea polyphenol theaflavin monogallate (TF-2) suppressed COX-2 and induced apoptosis in human colon cancer cells [Lu, J.B., Ho, C.-T., Ghai, G., Chen, K.Y., 2000. Differential effects of theaflavin monogallates on cell growth, apoptosis and Cox-2 gene expression in cancerous versus normal cells. Cancer Res. 60, 6465-6471.]. We now extended the study by using PCR-based differential display to search for genes that were selectively induced by TF-2. Here we report the identification of Regulator of G-binding protein signaling 10 (RGS10) as the target gene, which was induced as early as 4 h after the TF-2 treatment. We then examined the effect of TF-2 on several other RGS genes and found that, in addition to RGS10, TF-2 induced the expression of RGS14, but not RGS4. Other tea polyphenols, including theaflavin-3,3'-digallate (TF-3) and (-) epigallocatechin-3-gallate (EGCG), also induced the expression of RGS10 and RGS14, but not RGS4. However, theaflavin (TF-1), which does not contain the gallate moiety, was ineffective. These results showed for the first time that tea polyphenols can induce the expression of selective RGS genes and that the gallate moiety may be important in this induction. In view of the role of RGS in modulating G-protein mediated signal transduction pathways, our findings may be significant since dysregulation of G-signaling is prominently implicated in carcinogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app