JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Expression of islet-specific microRNAs during human pancreatic development.

During pancreatic islet development, sequential changes in gene expression are known to be necessary for efficient differentiation and function of the endocrine pancreas. Several studies till now have demonstrated that microRNAs (miRNAs), which regulate translation of gene transcripts, influence gene expression cascades involved in pancreas development. Some of these miRNAs; miR-7 and miR-375 have been known to be expressed at high levels in pancreas and are also known to be involved in Zebrafish pancreas development as well as insulin secretion in mice. We demonstrate here that 4 different islet-specific microRNAs (miR-7, miR-9, miR-375 and miR-376) are expressed at high levels during human pancreatic islet development. Of these, miR-375, is seen to be differentially expressed in human islet beta- as well as non-beta-cells. Though no significant difference in abundance of miR-375 was noted in either cell type, analysis of islet-specific miRNA and mRNA in single cells show that non-beta cells contain higher levels of miR-375. Our data demonstrate that miRNAs that are known to be regulated during Zebrafish pancreatic development may play similar role in human pancreatic islet development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app