Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons.

The aim of this study was to characterize soils contaminated by different levels of heavy metals and hydrocarbons (Madonna Dell'Acqua, Pisa, Italy). The soils were chemically and biochemically analysed by measuring the standard chemical properties and some enzyme activities related to microbial activity (dehydrogenase activity) and the soil carbon cycle (total and extracellular beta-glucosidase activities). The metabolic capacities of soil microorganisms to degrade hydrocarbons through catechol 2,3-dioxygenase were also described. The microbial diversity of contaminated and uncontaminated soils was estimated by denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA sequences. The PCR/single-strand conformation polymorphism (PCR/SSCP) method was used to estimate the genetic diversity of PAH-degrading genes in both contaminated and uncontaminated soils. A greater bacterial diversity and lower catechol 2,3-dioxygenase activity was detected in unpolluted soils. The complexity of the microbial community (Shannon and Simpson indices) as well as the dehydrogenase soil activity negatively correlated with contamination levels. The greatest PAH-degrading gene diversity and the most intense catechol 2,3-dioxygenase activity were found in the soils with the highest levels of hydrocarbons. Heavy metals and hydrocarbon pollution has caused a genetic and metabolic alteration in microbial communities, corresponding to a reduction in microbial activity. A multi-technique approach combining traditional biochemical methods with molecular-based techniques, along with some methodological improvements, may represent an important tool to expand our knowledge of the role of microbial diversity in contaminated soil.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app