JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary.

Ammonia oxidation in marine and estuarine sediments plays a pivotal role in the cycling and removal of nitrogen. Recent reports have shown that the newly discovered ammonia-oxidizing archaea can be both abundant and diverse in aquatic and terrestrial ecosystems. In this study, we examined the abundance and diversity of ammonia-oxidizing archaea (AOA) and betaproteobacteria (beta-AOB) across physicochemical gradients in San Francisco Bay--the largest estuary on the west coast of the USA. In contrast to reports that AOA are far more abundant than beta-AOB in both terrestrial and marine systems, our quantitative PCR estimates indicated that beta-AOB amoA (encoding ammonia monooxygenase subunit A) copy numbers were greater than AOA amoA in most of the estuary. Ammonia-oxidizing archaea were only more pervasive than beta-AOB in the low-salinity region of the estuary. Both AOA and beta-AOB communities exhibited distinct spatial structure within the estuary. AOA amoA sequences from the north part of the estuary formed a large and distinct low-salinity phylogenetic group. The majority of the beta-AOB sequences were closely related to other marine/estuarine Nitrosomonas-like and Nitrosospira-like sequences. Both ammonia-oxidizer community composition and abundance were strongly correlated with salinity. Ammonia-oxidizing enrichment cultures contained AOA and beta-AOB amoA sequences with high similarity to environmental sequences. Overall, this study significantly enhances our understanding of estuarine ammonia-oxidizing microbial communities and highlights the environmental conditions and niches under which different AOA and beta-AOB phylotypes may thrive.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app