Add like
Add dislike
Add to saved papers

Silica gel-immobilized-dithioacetal derivatives as potential solid phase extractors for mercury(II).

Talanta 2000 January 25
Dithioacetal derivatives with different para-substituents, XH, CH(3), OCH(3), Cl and NO(2) were synthesized and chemically immobilized on the surface of silica gel for the formation of five newly synthesized silica gel phases (I-V). Characterization of the silica gel surface modification by the organic compounds was accomplished by both the surface coverage determination as well as the infrared spectroscopic analysis. The metal sorption properties of the silica gel phases were studied to evaluate their performance toward metal-uptake, extraction and selective extraction processes of different metal ions from aqueous solutions based on examination of the various controlling factors. The studied and evaluated factors are the pH effect of metal ion solution on the metal capacity values (mmol g(-1)), equilibration shaking time on the percent extraction as well as the structure and substituent (X) effects on the determined mmol g(-1) values. The results of these studies revealed a general rule of excellent affinity of these silica gel phases-immobilized-dithioacetal derivatives for selective extraction of mercury(II) in presence of other interfering metal ions giving rise to a range of 94-100% extraction of the spiked mercury(II) in the metal ions mixture. The potential application of the newly synthesized silica gel phases (I-V) for selective extraction of mercury(II) from two different natural water samples, namely sea and drinking tap water, spiked with 1.0 and 10.0 ng ml(-1) mercury(II) were also studied by column technique followed by cold vapour atomic absorption analysis of the unretained mercury(II). The results indicated a good percent extraction and removal (90-100+/-3%) of the spiked mercury(II) by all the five silica gel phases. In addition, insignificant contribution by the matrix effect on the processes of selective solid phase extraction of mercury(II) from natural water samples was also evident.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app