COMPARATIVE STUDY
EVALUATION STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The impact of imposed expiratory resistance in neonatal mechanical ventilation: a laboratory evaluation.

Respiratory Care 2008 November
BACKGROUND: Small endotracheal tubes (ETTs) and neonatal ventilators can impact gas exchange, work of breathing, and lung-mechanics measurements in infants, by increasing the expiratory resistance (R(E)) to gas flow.

METHODS: We tested two each of the Babylog 8000plus, Avea, Carestation, and Servo-i ventilators. In the first phase of the study we evaluated (1) the imposed R(E) of an ETT and ventilator system during simulated passive breathing at various tidal volume (V(T)), positive end-expiratory pressure (PEEP), and frequency settings, and (2) the intrinsic PEEP at various ventilator settings. In the second phase of this study we evaluated the imposed expiratory work of breathing (WOB) of the ETT and ventilator system at various PEEP levels during simulated spontaneous breathing using an infant lung model. Pressure and flow were measured continuously, and we calculated the imposed R(E) of the ETT and each ventilator, and the intrinsic PEEP with various PEEP, V(T), and frequency settings. We measured the imposed expiratory WOB with several PEEP levels during a simulated spontaneous breathing pattern.

RESULTS: The ventilator's contribution to the imposed R(E) was greater than that of the ETT with nearly all of the ventilators tested. There were significant differences in ventilator-imposed R(E) between the ventilator brands at various PEEP, V(T), and frequency settings. The Babylog 8000plus consistently had the lowest ventilator-imposed R(E) in the majority of the test conditions. There was no intrinsic PEEP (>1 cm H(2)O) in any of the test conditions with any ventilator brand. There were also no significant differences in the imposed expiratory WOB between ventilator brands during simulated spontaneous breathing.

CONCLUSIONS: The major cause of R(E) appears to be the ventilator exhalation valve. Neonatal ventilators that use a set constant flow during inhalation and exhalation appear to have less R(E) than ventilators that use a variable bias flow during exhalation. Clinical studies are needed to determine whether the imposed R(E) of these ventilator designs impacts gas exchange, lung mechanics, or ventilator weaning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app