JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Training induced decrease in oxygen cost of cycling is accompanied by down-regulation of SERCA expression in human vastus lateralis muscle.

We have examined the effect of 5 week cycling endurance training program on the sarco(endo)plasmic reticulum Ca2+ ATPase isoforms (SERCA1 and 2) and myosin heavy chain (MyHC) in the vastus lateralis muscle as well as on the oxygen uptake to power output ratio (VO2/PO) during incremental cycling. Fifteen untrained men performed an incremental cycling exercise until exhaustion before and after moderate intensity training. Muscle biopsies were taken from vastus lateralis before and after training program. Training resulted in higher (P = 0.048) maximal oxygen uptake (VO(2max)) as well as in higher power output reached at VO(2max) (P = 0.0001). Moreover, lower (P = 0.02) VO2/PO ratio determined during incremental moderate intensity cycling (i.e. 30-120 W) as well as lower (P = 0.003) VO2/PO ratio reached at VO(2max) were observed after the training. A significant down regulation of SERCA2 protein (P = 0.03) and tendency (P = 0.055) to lower SERCA1 content accompanied by lower (P<10(-4)) plasma thyroid hormone concentration, with no changes (P = 0.67) in MyHC composition in vastus lateralis muscle were found after training. We have concluded that the increase in mechanical efficiency of cycling occurring during first weeks of endurance training is not related to changes in MyHC composition but it may be due to down-regulation of SERCA pumps.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app