JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Proteasome inhibition by bortezomib does not translate into efficacy on two malignant glioma xenografts.

Oncology Reports 2008 November
Bortezomib and other proteasome inhibitors have demonstrated an interesting antitumor activity against glioma cell lines. The present study aimed to evaluate the cytotoxic potential of bortezomib in vivo on two human malignant glioma xenografts using doses relevant to clinical practice. The TCG3 and U87 malignant glioma xenografts were heterotopically implanted onto nude mice. Bortezomib effects were evaluated using the three different doses of 0.25, 0.45 and 0.90 mg/kg. Proteasome chymotrypsin-like activity was measured by a fluorimetric method. Analysis of the cell cycle distribution was performed after propidium iodide staining. The apoptotic rate and proliferative index were determined by an immunohistochemical detection of cleaved caspase-3 and Ki-67, respectively. Our data showed that bortezomib induced a dose-dependent inhibition of proteasome chymotrypsin-like activity in the two glioma models. Maximal inhibition was achieved 24 h after drug injection and was approximately 30% of basal proteasome activity. However, this effect did not induce any increase in the apoptotic rate and did not modify cell cycle distribution. At the maximal dose tested (0.90 mg/kg), bortezomib did not show any growth delay as compared to untreated tumors, in either of the xenograft models. In conclusion, our study is the first to demonstrate that bortezomib, at a clinically relevant dose, did not have any effect on the apoptosis and proliferation of malignant gliomas in vivo. These results contrast with the promising preclinical data obtained in vitro with this drug and emphasize the importance of performing preclinical studies on animal models, in conditions close to clinical settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app