JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction.

The caspase recruitment domain (CARD) of intracellular adaptors and sensors plays a critical role in the assembly of signaling complexes involved in innate host defense against pathogens and in the regulation of inflammatory responses. The cytosolic receptor retinoic acid-inducible gene-I (RIG-I) recognizes viral RNA in a 5'-triphosphate-dependent manner and initiates an antiviral signaling cascade. Upon viral infection, the N-terminal CARDs of RIG-I undergo the K(63)-linked ubiquitination induced by tripartite motif protein 25 (TRIM25), critical for the interaction of RIG-I with its downstream signaling partner MAVS/VISA/IPS-1/Cardif. Here, we demonstrate the distinct roles of RIG-I first and second CARD in TRIM25-mediated RIG-I ubiquitination: TRIM25 binds the RIG-I first CARD and subsequently ubiquitinates its second CARD. The T(55)I mutation in RIG-I first CARD abolishes TRIM25 interaction, whereas the K(172)R mutation in the second CARD eliminates polyubiquitin attachment. The necessity of the intact tandem CARD for RIG-I function is further evidenced by a RIG-I splice variant (SV) whose expression is robustly up-regulated upon viral infection. The RIG-I SV carries a short deletion (amino acids 36-80) within the first CARD and thereby loses TRIM25 binding, CARD ubiquitination, and downstream signaling ability. Furthermore, because of its robust inhibition of virus-induced RIG-I multimerization and RIG-I-MAVS signaling complex formation, this SV effectively suppresses the RIG-I-mediated IFN-beta production. This study not only elucidates the vital role of the intact tandem CARD for TRIM25-mediated RIG-I activation but also identifies the RIG-I SV as an off-switch regulator of its own signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app