JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Microvalve-assisted patterning platform for measuring cellular dynamics based on 3D cell culture.

A microfluidic platform to satisfy both 3D cell culture and cell-based assay is required for credible assay results and improved assay concept in drug discovery. In this article, we demonstrate a microvalve-assisted patterning (MAP) platform to provide a new method for investigating cellular dynamics by generating a linear concentration gradient of a drug as well as to realize 3D cell culture in a microenvironment. The MAP platform was fabricated by multilayer soft lithography and several microvalves made it possible to pattern a cell-matrix (scaffold) and to exchange media solutions without breaking cell-matrix structure in a microchannel. This approach provides not only exact fluids control, bubble removal, and stable solution exchange in a microchannel, but also reliable scaffold fabrication and 3D cell culture. In this study, hepatotoxicity tests with human hepatocellular liver carcinoma cells (HepG2) were also performed in real-time monitoring where cell morphologies exposed to different drug concentrations were observed at a time. Compared to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, the MAP platform could be used to reduce drug amount and assay time for cell-based assays as much as 10 and 3 times, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app