Add like
Add dislike
Add to saved papers

Peptide and protein mimetics inhibiting amyloid beta-peptide aggregation.

Protein misfolding is related to some fatal diseases including Alzheimer's disease (AD). Amyloid beta-peptide (Abeta) generated from amyloid precursor protein can aggregate into amyloid fibrils, which are known to be a major component of Abeta deposits (senile plaques). The fibril formation of Abeta is typical of a nucleation-dependent process through self-recognition. Moreover, during fibrillization, several metastable intermediates such as soluble oligomers, including Abeta-derived diffusible ligands (ADDLs) and Abeta*56, are produced, which are thought to be the most toxic species to neuronal cells. Therefore, construction of molecules that decrease the Abeta aggregates, including soluble oligomers, protofibrils, and amyloid fibrils, might further our understanding of the mechanism(s) behind fibril formation and enable targeted drug discovery against AD. To this aim, various peptides and peptide derivatives have been constructed using the "Abeta binding element" based on the structural models of Abeta amyloid fibrils and the mechanisms of self-assembly. The central hydrophobic amino acid sequence, LVFF, of Abeta is a key sequence to self-assemble into amyloid fibrils. By combination of this core sequence with a hydrophobic or hydrophilic moiety, such as cholic acid or aminoethoxy ethoxy acetic acid units, respectively, good inhibitors of Abeta aggregation can be designed and synthesized. A peptide, LF, consisting of the sequence Ac-KQKLLLFLEE-NH 2, was designed based on the core sequence of Abeta but with a simplified amino acid sequence. The LF peptide can form amyloid-like fibrils that efficiently coassemble with mature Abeta1-42 fibrils. The LF peptide was also observed to immediately transform the soluble oligomers of Abeta1-42, which are thought to pose toxicity in AD, into amyloid-like fibrils. On the other hand, two Abeta-like beta-strands with a parallel orientation were embedded in green fluorescent protein (GFP), comprised of a beta-barrel structure, to make pseudo-Abeta beta-sheets on its surface. The GFP variant P13H binds to Abeta1-42 and inhibits Abeta1-42 oligomerization effectively in a substoichiometric condition. Thus, molecules capable of binding to Abeta can be designed based on structural similarities with the Abeta molecule. The peptide and protein mimetics based on the structural features of Abeta might lead to the development of drug candidates against AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app