JOURNAL ARTICLE

Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice

Yong Xiang, Ning Tang, Hao Du, Haiyan Ye, Lizhong Xiong
Plant Physiology 2008, 148 (4): 1938-52
18931143
OsbZIP23 is a member of the basic leucine zipper (bZIP) transcription factor family in rice (Oryza sativa). Expression of OsbZIP23 is strongly induced by a wide spectrum of stresses, including drought, salt, abscisic acid (ABA), and polyethylene glycol treatments, while other stress-responsive genes of this family are slightly induced only by one or two of the stresses. Transactivation assay in yeast demonstrated that OsbZIP23 functions as a transcriptional activator, and the sequences at the N terminus (amino acids 1-59) and a region close to the C terminus (amino acids 210-240) are required for the transactivation activity. Transient expression of OsbZIP23-green fluorescent protein in onion (Allium cepa) cells revealed a nuclear localization of the protein. Transgenic rice overexpressing OsbZIP23 showed significantly improved tolerance to drought and high-salinity stresses and sensitivity to ABA. On the other hand, a null mutant of this gene showed significantly decreased sensitivity to a high concentration of ABA and decreased tolerance to high-salinity and drought stress, and this phenotype can be complemented by transforming the OsbZIP23 back into the mutant. GeneChip and real-time polymerase chain reaction analyses revealed that hundreds of genes were up- or down-regulated in the rice plants overexpressing OsbZIP23. More than half of these genes have been annotated or evidenced for their diverse functions in stress response or tolerance. In addition, more than 30 genes that are possible OsbZIP23-specific target genes were identified based on the comparison of the expression profiles in the overexpressor and the mutant of OsbZIP23. Collectively, these results indicate that OsbZIP23 functions as a transcriptional regulator that can regulate the expression of a wide spectrum of stress-related genes in response to abiotic stresses through an ABA-dependent regulation pathway. We propose that OsbZIP23 is a major player of the bZIP family in rice for conferring ABA-dependent drought and salinity tolerance and has high potential usefulness in genetic improvement of stress tolerance.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
18931143
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"