Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Stably overexpressed human Frizzled-2 signals through the beta-catenin pathway and does not activate Ca2+-mobilization in Human Embryonic Kidney 293 cells.

Cellular Signalling 2009 January
Signal transduction via the Frizzled family of seven-transmembrane receptors controls important developmental processes. Aberrant signaling caused by altered Frizzled receptor activity or by mutations in downstream signaling components has been implicated in several adult pathologies. A diverse array of intracellular signaling pathways has been suggested to transduce the signals exerted in cells when secreted ligands of the Wnt family bind to Frizzled receptors. Studies with a chimeric receptor composed of Frizzled-2 and the beta2-adrenergic receptor have suggested that the binding of Wnt-5a to Frizzled-2 results in the activation of G proteins of the Galpha(i) family, the mobilization of calcium from intracellular stores and the induction of gene transcription through nuclear factor of activated T cells. In this report, we demonstrate by using beta-lactamase reporter gene technology that full-length, wild-type human Frizzled-2 does not couple to calcium-mediated signaling in HEK293 cells following stimulation with purified recombinant mouse Wnt-5a. In contrast, when stimulated with recombinant mouse Wnt-3a, Frizzled-2 activates the canonical Wnt/Frizzled signaling pathway, involving the transcriptional modulator beta-catenin. Our report underlines the importance of using cell lines stably overexpressing wild-type Frizzled receptors and the use of purified ligands when studying receptor pharmacology. This approach has allowed us to measure the half-maximal concentration for activation of human Frizzled-2 (1.5+/-0.4 nM; avg.+/-SD) and human Frizzled-1 (1.3+/-0.5 nM) following stimulation by Wnt-3a. Our results suggest that there is receptor redundancy with regard to Wnt-3a reception. In addition, we introduce beta-lactamase reporter gene technology as an alternative to luciferase-based reporters to measure Frizzled receptor modulation for the discovery of Frizzled receptor-interacting drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app