Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Differences in doxorubicin-induced apoptotic signaling in adult and immature cardiomyocytes.

A proposed mechanism for the cardiotoxicity of doxorubicin (DOX) involves apoptosis in cardiomyocytes. In the study described here, we investigated the molecular basis for the differences in DOX-induced toxicity in adult rat cardiomyocytes (ARCM), neonatal rat cardiomyocytes (NRCM), and rat embryonic H9c2 cardiomyoblasts. Activation of caspase-9 and -3 was considerably lower in DOX-treated ARCM as compared with NRCM and H9c2 cardiomyoblasts. Addition of cytochrome c caused the activation of caspase-9 and -3 in permeabilized NRCM and H9c2 cardiomyoblasts but not in permeabilized ARCM. Expression of proapoptotic proteins, apoptotic protease activating factor-1 (Apaf1), and procaspase-9 was significantly lower, and abundance of antiapoptotic X-linked inhibitor of apoptosis protein (XIAP) was higher in ARCM, as compared with immature cardiac cells. Despite the abundance of XIAP in ARCM, its role in the inhibition of apoptosome function was dismissed, as second mitochondria-derived activator of caspases (Smac)-N7 peptide, had no effect on caspase activation in response to cytochrome c in these cells. Adenoviral expression of Apaf1 exacerbated the activation of caspase-9 and -3 in DOX-treated NRCM, but did not increase their activities in DOX-treated ARCM. This finding points to a major difference in the apoptotic signaling between immature and adult cardiomyocytes. The mitochondrial apoptotic pathway is limited in ARCM treated with DOX.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app