OPEN IN READ APP
COMPARATIVE STUDY
JOURNAL ARTICLE

Breastfeeding and childhood obesity: shift of the entire BMI distribution or only the upper parts?

Andreas Beyerlein, AndrĂ© M Toschke, RĂ¼diger von Kries
Obesity 2008, 16 (12): 2730-3
18846050
A protective effect of breastfeeding on overweight (binary) has been reported by meta-analyses using logistic regression, whereas studies using linear regression and BMI (continuous) detected no significant association. To assess the relationship of these differences with different outcome classification, we compared results for linear, logistic, and quantile regression models in a cross-sectional data set of considerable size. Height, weight, and questionnaire data on 9,368 preschool children were collected during school-entry examinations in 1999 and 2002 in Bavaria, Southern Germany. We calculated multivariable linear, logistic, and quantile regression models with outcomes BMI, overweight, obesity, and BMI quantiles (as appropriate). Models considered the covariates breastfeeding (breastfed vs. never breastfed), gender, age, smoking in pregnancy, TV watching, maternal BMI, parental education, and early infant weight gain. No significant association was found in the linear regression model. In the logistic model, a significant association was observed for obesity (odds ratio: 0.72 (95% confidence interval (CI) 0.55, 0.94)). In quantile regression no significant point estimates were observed for the percentiles of 0.4-0.8. However, breastfeeding reduced the BMI of children having values on the 90th and 97th percentiles by -0.23 (95% CI -0.39, -0.07) and -0.26 (95% CI -0.45, -0.07) kg/m(2), respectively, on average. In contrast, breastfeeding was significantly associated with a low shift toward higher BMI values for BMI quantiles of 0.03 and from 0.1 to 0.3. The detection of associations between breastfeeding and childhood body composition might be related to the coding of the response variable (continuous or binary) and the statistical method used (linear, logistic, or quantile regression). Quantile regression should additionally be applied in such studies.

Comments

You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
18846050
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"