JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle.

AMP-activated protein kinase (AMPK) is a heterotrimeric complex, composed of a catalytic subunit (alpha) and two regulatory subunits (beta and gamma), that works as a cellular energy sensor. The existence of multiple heterotrimeric complexes provides a molecular basis for the multiple roles of this highly conserved signaling system. The AMPK gamma3 subunit is predominantly expressed in skeletal muscle, mostly in type II glycolytic fiber types. We determined whether the AMPK gamma3 subunit has a role in signaling pathways that mediate mitochondrial biogenesis in skeletal muscle. We provide evidence that overexpression or ablation of the AMPK gamma3 subunit does not appear to play a critical role in defining mitochondrial content in resting skeletal muscle. However, overexpression of a mutant form (R225Q) of the AMPK gamma3 subunit (Tg-AMPKgamma3(225Q)) increases mitochondrial biogenesis in glycolytic skeletal muscle. These adaptations are associated with an increase in expression of the co-activator PGC-1alpha and several transcription factors that regulate mitochondrial biogenesis, including NRF-1, NRF-2, and TFAM. Succinate dehydrogenase staining, a marker of the oxidative profile of individual fibers, was also increased in transversal skeletal muscle sections of white gastrocnemius muscle from Tg-AMPKgamma3(225Q) mice, independent of changes in fiber type composition. In conclusion, a single nucleotide mutation (R225Q) in the AMPK gamma3 subunit is associated with mitochondrial biogenesis in glycolytic skeletal muscle, concomitant with increased expression of the co-activator PGC-1alpha and several transcription factors that regulate mitochondrial proteins, without altering fiber type composition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app