JOURNAL ARTICLE

Effect of fatigue on double pole kinematics in sprint cross-country skiing

Raphael Zory, Nicolas Vuillerme, Barbara Pellegrini, Federico Schena, Annie Rouard
Human Movement Science 2009, 28 (1): 85-98
18835054
The aim of the present study was to examine the effect of fatigue (physiological, mechanical, and muscular parameters) induced by a sprint simulation on kinematic parameters (cycle, phases, and joints angles) of the double pole technique. Eight elite skiers were tested for knee extensor strength and upper body power both before and after a three-bout simulation of sprint racing. They were video analyzed during the final part of the test track of bouts 1 and 3 using a digital camera. Results showed that skiers were in a fatigue state (decrease of the knee extensors voluntary force (-10.4+/-10.4%) and upper body power output (-11.1+/-8.7%) at the end of the sprint. During bout 3, the final spurt and cycle velocities decreased significantly (-7.5+/-12.3%; -13.2+/-9.5%; both p<.05). Angular patterns were only slightly modified between bouts 1 and 3 with trunk, hip, and pole angles being significantly greater for the third bout. The decrease of hip and trunk flexion and the lower inclination of the pole during the poling phase suggested a reduced effectiveness of the force application which could lead to a decrease in the cycle velocity.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
18835054
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"