Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells

Zhi-Yong Zhang, Swee-Hin Teoh, Mark S K Chong, Jan Thorsten Schantz, Nicholas M Fisk, Mahesh A Choolani, Jerry Chan
Stem Cells 2009, 27 (1): 126-37
Mesenchymal stem cells (MSCs) from human adult bone marrow (haMSCs) represent a promising source for bone tissue engineering. However, their low frequencies and limited proliferation restrict their clinical utility. Alternative postnatal, perinatal, and fetal sources of MSCs appear to have different osteogenic capacities, but have not been systematically compared with haMSCs. We investigated the proliferative and osteogenic potential of MSCs from human fetal bone marrow (hfMSCs), human umbilical cord (hUCMSCs), and human adult adipose tissue (hATMSCs), and haMSCs, both in monolayer cultures and after loading into three-dimensional polycaprolactone-tricalcium-phosphate scaffolds.Although all MSCs had comparable immunophenotypes, only hfMSCs and hUCMSCs were positive for the embryonic pluripotency markers Oct-4 and Nanog. hfMSCs expressed the lowest HLA-I level (55% versus 95%-99%) and the highest Stro-1 level (51% versus 10%-27%), and had the greatest colony-forming unit-fibroblast capacity (1.6x-2.0x; p < .01) and fastest doubling time (32 versus 54-111 hours; p < .01). hfMSCs had the greatest osteogenic capacity, as assessed by von-Kossa staining, alkaline phosphatase activity (5.1x-12.4x; p < .01), calcium deposition (1.6x-2.7x in monolayer and 1.6x-5.0x in scaffold culture; p < .01), calcium visualized on micro-computed tomography (3.9x17.6x; p < .01) and scanning electron microscopy, and osteogenic gene induction. Two months after implantation of cellular scaffolds in immunodeficient mice, hfMSCs resulted in the most robust mineralization (1.8x-13.3x; p < .01).The ontological and anatomical origins of MSCs have profound influences on the proliferative and osteogenic capacity of MSCs. hfMSCs had the most proliferative and osteogenic capacity of the MSC sources, as well as being the least immunogenic, suggesting they are superior candidates for bone tissue engineering.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"