JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Nitrogen effects on decomposition: a five-year experiment in eight temperate sites.

Ecology 2008 September
The influence of inorganic nitrogen (N) inputs on decomposition is poorly understood. Some prior studies suggest that N may reduce the decomposition of substrates with high concentrations of lignin via inhibitory effects on the activity of lignin-degrading enzymes, although such inhibition has not always been demonstrated. I studied the effects of N addition on decomposition of seven substrates ranging in initial lignin concentrations (from 7.4% to 25.6%) over five years in eight different grassland and forest sites in central Minnesota, USA. I predicted that N would stimulate the decomposition of lignin-poor substrates but retard the decomposition of lignin-rich substrates. Across these sites, N had neutral or negative effects on decomposition rates. However, in contrast to my hypothesis, effects of N on decomposition were independent of substrate initial lignin concentrations, and decomposition of the lignin fraction was unaffected by N fertilization. Rather, substrate-site combinations that exhibited more rapid decomposition rates in the control treatment were affected more negatively by addition of N fertilization. Taken together, these results suggest that decreased decomposition with added N did not result from inhibition of lignin-degrading enzyme activity, but may have resulted from abiotic interactions between N fertilizer and products of microbial degradation or synthesis or from N effects on the decomposer community. Low initial substrate N concentrations and N fertilization both stimulated N immobilization, but the differences among substrates were generally much larger than the effects of fertilization. This study suggests that atmospheric N addition could stimulate ecosystem carbon sequestration in some ecosystems as a result of reduced rates of forest floor decomposition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app