JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

ATM and the Mre11-Rad50-Nbs1 complex respond to nucleoside analogue-induced stalled replication forks and contribute to drug resistance.

Cancer Research 2008 October 2
The Mre11-Rad50-Nbs1 complex and autophosphorylated Ser(1981)-ATM are involved in recognizing and repairing DNA damage, such as double-strand breaks (DSB). However, the role of these factors in response to stalled replication forks is not clear. Nucleoside analogues are agents that are incorporated into DNA during replication, which cause stalling of replication forks. The molecular mechanisms that sense these events may signal for DNA repair and contribute to survival but are poorly understood. Cellular responses to both DSBs and stalled replication forks are marked by H2AX phosphorylation on Ser(139) (gamma-H2AX), which forms nuclear foci at sites of DNA damage. Here, concentrations of the nucleoside analogues 1-beta-d-arabinofuranosylcytosine (cytarabine; ara-C), gemcitabine, and troxacitabine, which inhibited DNA synthesis by 90% within 2 hours, were determined for each agent. Using gamma-H2AX as a marker for changes in chromatin structure, we show that Mre11, Rad50, Nbs1, and phosphorylated ATM respond to nucleoside analogue-induced stalled replication forks by forming nuclear foci that colocalize with gamma-H2AX within 2 hours. Because neither DSBs nor single-strand breaks were detectable after nucleoside analogue exposure, we conclude that this molecular response is not due to the presence of DNA breaks. Deficiencies in ATM, Mre11, or Rad50 led to a 2- to 5-fold increase in clonogenic sensitization to gemcitabine, whereas Nbs1 and H2AX deficiency did not affect reproductive growth. Taken together, these results suggest that ATM, Mre11, and Rad50 are required for survival after replication fork stalling, whereas Nbs1 and H2AX are inconsequential.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app