JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Automated neonatal seizure detection mimicking a human observer reading EEG.

OBJECTIVE: The description and evaluation of a novel patient-independent seizure detection for the EEG of the newborn term infant.

METHODS: We identified characteristics of neonatal seizures by which a human observer is able to detect them. Neonatal seizures were divided into two types. For each type, a fully automated detection algorithm was developed based on the identified human observer characteristics. The first algorithm analyzes the correlation between high-energetic segments of the EEG. The second detects increases in low-frequency activity (<8 Hz) with high autocorrelation.

RESULTS: The complete algorithm was tested on multi-channel EEG recordings of 21 patients with and 5 patients without electrographic seizures, totaling 217 h of EEG. Sensitivity of the combined algorithms was found to be 88%, Positive Predictive Value (PPV) 75% and the false positive rate 0.66 per hour.

CONCLUSIONS: Our approach to separate neonatal seizures into two types yields a high sensitivity combined with a good PPV and much lower false positive rate than previously published algorithms.

SIGNIFICANCE: The proposed algorithm significantly improves neonatal seizure detection and monitoring.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app