JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ultrafast infrared spectroscopy of riboflavin: dynamics, electronic structure, and vibrational mode analysis.

Femtosecond time-resolved infrared spectroscopy was used to study the vibrational response of riboflavin in DMSO to photoexcitation at 387 nm. Vibrational cooling in the excited electronic state is observed and characterized by a time constant of 4.0 +/- 0.1 ps. Its characteristic pattern of negative and positive IR difference signals allows the identification and determination of excited-state vibrational frequencies of riboflavin in the spectral region between 1100 and 1740 cm (-1). Density functional theory (B3LYP), Hartree-Fock (HF) and configuration interaction singles (CIS) methods were employed to calculate the vibrational spectra of the electronic ground state and the first singlet excited pipi* state as well as respective electronic energies, structural parameters, electronic dipole moments and intrinsic force constants. The harmonic frequencies of the S 1 excited state calculated by the CIS method are in satisfactory agreement with the observed band positions. There is a clear correspondence between computed ground- and excited-state vibrations. Major changes upon photoexcitation include the loss of the double bond between the C4a and N5 atoms, reflected in a downshift of related vibrations in the spectral region from 1450 to 1720 cm (-1). Furthermore, the vibrational analysis reveals intra- and intermolecular hydrogen bonding of the riboflavin chromophore.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app